

FUNDAMENTALS OF MUSCULOSKELETAL IMAGING

THIRD EDITION

Lynn N. McKinnis, PT, OCS Butler, Pennsylvania

Concordia Visiting Nurses Staff Physical Therapist Cabot, Pennsylvania

St. Francis University Adjunct Instructor Department of Physical Therapy Loretto, Pennsylvania

University of Montana Faculty Affiliate School of Physical Therapy & Rehabilitation Science Missoula, Montana

ЛУЧЕВАЯ ДИАГНОСТИКА В ТРАВМАТОЛОГИИ И ОРТОПЕДИИ

КЛИНИЧЕСКОЕ РУКОВОДСТВО

Линн Н. МакКиннис

Перевод с английского **Н.И.Паутовой**

под редакцией **д-ра мед. наук, профессора Н. А. Шестерни**

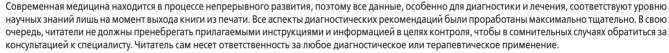
Москва, 2015

УДК 616-001-073.75 ББК 57.58 M15

МакКиннис, Линн Н.

M15

Лучевая диагностика в травматологии и ортопедии. Клиническое руководство / Перевод с англ. – М.: Издательство Панфилова, 2015. – 652 с.


ISBN 978-5-91839-067-2

В фундаментальном клиническом руководстве представлен весь спектр вопросов диагностики повреждений и заболеваний опорно-двигательного аппарата. В третьем издании особое внимание уделено патофизиологическим основам клинической интерпретации характерных рентгенологических изменений. Современные методы визуализации рассматриваются соответственно их эффективности в определении предполагаемого диагноза с учетом их специфичности, времени проведения, инвазивности и стоимости. Основой иллюстративного материала руководства являются более 1000 рисунков, диагностических схем, высококачественных рентгенограмм, компьютерных томограмм и ультразвуковых изображений.

Книга предназначена для травматологов, ортопедов, специалистов по лучевой диагностике и лечебной физкультуре.

УДК616-001-073.75 ББК57.58

Предупреждение

Каждый раздел данной книги защищен авторскими правами. Любое ее использование вне положений закона об авторском праве при отсутствии письменного согласия издательства недопустимо и наказуемо. Ни одна из частей данной книги не может быть воспроизведена в какой-либо форме без письменного разрешения издательства.

The original English language work has been published by: The F.A. Davis Company, Philadelphia, Pennsylvania Copyright © 2010. All rights reserved

© 2015 Перевод на русский язык, подготовка оригинал-макета, верстка, оформление ООО «Издательство Панфилова»

Компьютерная томография с контрастированием стала возможной благодаря появлению аппаратуры для объемной визуализации и современному программному обеспечению. Слева находится трехмерная реконструкция скелета и внутренних органов. На двухмерном изображении в сагиттальной плоскости, полученном через медиастинальное окно, хорошо контрастируются мягкие ткани и кости. «Деградированное» изображение справа, имеющее вид рентгенограммы, используется для планирования исследования и определения локализации органов-мишеней. Данные для этих изображений были получены меньше, чем за 17 секунд. Использовался сканер Aquilion 64, первый истинно объемный 64-срезовый компьютерный томограф, способный синхронно получать 64 среза толщиной 0,5 мм за каждый 350-миллисекундный оборот (любезно предоставлено Toshiba Medical Systems, Europe).

ОГЛАВЛЕНИЕ

ЧАСТЬ ПЕРВАЯ

Глава 1	Общие принципы визуализации опорно-двигательного аппарата	1
Глава 2	Рентгенологическая оценка, модель исследования и диагностика	41
Глава 3	Рентгенологическая диагностика переломов	85
Глава 4	Компьютерная томография Hilmir Agustsson, MHSc, DPT, MTC, CFC	125
Глава 5	Магнитно-резонансная томография Hilmir Agustsson, MHSc, DPT, MTC, CFC	141
Глава б	Ультразвуковая диагностика Hilmir Agustsson, MHSc, DPT, MTC, CFC	157
Глава 7	Исследование шейного отдела позвоночника	169
Глава 8	Рентгенологическое исследование височно-нижнечелюстного сустава Hilmir Agustsson, MHSc, DPT, MTC, CFC	213
Глава 9	Рентгенологическое исследование грудного отдела позвоночника, грудины и ребер	237
Глава 10	Рентгенография органов грудной клетки и визуализация сердца и легких	277

ЧАСТЬ ВТОРАЯ

Глава 11	Рентгенологическое исследование пояснично- крестцового и крестцово-подвздошного отделов позвоночника	307
Глава 12	Рентгенологическое исследование тазобедренного сустава	349
Глава 13	Рентгенологическая оценка коленного сустава	391
Глава 14	Рентгенологическое исследование голеностопного сустава и стопы	433
Глава 15	Рентгенологическое исследование плечевого сустава	479

Глава 16	Рентгенологическая оценка локтевого сустава	519
Глава 17	Рентгенологическая оценка кисти и запястья В соавторстве с Corlia van Rooyen, MPT, RHT	551
Глава 18	Визуализация в физиотерапии L Readley Rarr PT DPT OCS	605

СОДЕРЖАНИЕ ГЛАВ

ЧАСТЬ ПЕРВАЯ

Эпидуральное введение стероидов

			очастотная а
			ография
Глава 1 Общие принципы визуализации			кожная тонк
опорно-двигательного аппарата	1	Чреск	кожная верт
		ИІ	цементопла
Для чего необходимо изучение визуализации?	1	Автом	иатизирова
Что такое лучевая диагностика?	2	Внутр	идисковая:
Что такое визуализация опорно-двигательного		Развит	ие визуалі
аппарата?	2	Кратко	е изложен
Историческая справка	3	•	
Сенсация на рубеже веков	3	Глава 2	Рентген
1910–1920-е годы	3		модель
1930–1940-е годы	3		шодоль
1950–1960-е года	4	Интерп	ретация р
1970-е и 1980-е годы	4		ражения
1990-е годы и наше время	4		одные камн
Необходимые научные данные	5		одгівіс каміт Іожет сдела
Что такое рентгенограмма?	5		ображения?
Что такое излучение?	6		ь исследо і
Что такое рентгеновские лучи?	7		генологич
Приемники изображения: различные пути захвата	,		оложение
рентгеновских лучей	8		эложение 10тность кос
Золотой стандарт: цифровая/пленочная рентгенография	8		
	9		ящевые про
Рентгеноскопия	-		ягкие ткани
Компьютерная рентгенография	10	-	я диагнос
Цифровая рентгенография	11		патологиче
Интерпретация изображения	11		остраненно
Что такое рентгеноконтрастность?	11		ностические
Рентгеноконтрастность как отражение состава: анатомия			нологичес
в четырех оттенках серого	12		логически
Рентгеноконтрастность как показатель толщины	13		атоидный ар
В скольких плоскостях мы можем видеть?	14		рартрит (дег
Рентгеноконтрастность розы	16		опороз
Больше о рентгенограмме	17		кции опорн
Рентгенологическая терминология	18		оли костей
Передне-задняя, боковая и косая проекции	18	Рентге	нологичес
Анализ рентгенограмм	19	Загол	OBOK
Идентификационные маркеры	22		ическая инф
Показатели качества изображения	22	Получ	ченные дані
Стандартная рентгенография	28	Заклк	очение
Рентгенолог как специалист по визуализации	28	Рекол	иендации
Другие общие методы исследования		Подп	ИСЬ
опорно-двигательного аппарата	30	Приме	р рентгенс
Рентгенография с контрастом	30	Кратко	е изложен
Аналоговая томография	30	-	
Компьютерная томография	32	Глава З	Рентген
Сцинтиграфия	33		перелог
Магнитно-резонансная томография	35		-
Ультразвуковое исследование	35	Травма	— самая ч
Инвазивные методики	36	-	тенограф
Эпидуральное введение стероидов	37	-	зая диагнос

Блока	ада спинномозговых нервов	37
	очастотная абляция	38
	ография	38
		38
	кожная тонкоигольная биопсия кожная вертебропластика, кифопластика	20
		38
	цементопластика	
	матизированная чрескожная поясничная дискэктомия	38
	оидисковая электротермальная терапия (ВДЭТ)	39
	ие визуализации	39
кратко	е изложение ключевых вопросов	39
Глава 2	Рентгенологическая оценка,	41
	модель исследования и диагностика	41
Интерп	ретация рентгенологического	
изоб	ражения	41
Подв	одные камни при интерпретации изображения	41
Что м	южет сделать не-рентгенолог при интерпретации	
ИЗ	ображения?	42
Модел	ь исследования: азбука (ABCs)	
рент	тенологического анализа	42
А. По	оложение	42
В. Пл	потность костей	44
C. Xp	оящевые пространства	48
	ягкие ткани	51
Лучева	я диагностика патологии скелета	54
	патологических изменений	54
	остраненность поражения	54
	ностические факторы	54
	нологические характеристики основных	
	логических состояний	59
	атоидный артрит у взрослых	59
	рартрит (дегенеративное заболевание суставов)	64
	опороз	67
	екции опорно-двигательного аппарата	71
	оли костей	74
,	нологическое заключение	77
Загол		79
		80
	ическая информация	80
	ченные данные	81
_	очение	81
	иендации	81
Подп		
	р рентгенологического заключения е изложение ключевых вопросов	81 82
Глава 3	Рентгенологическая диагностика	85
	переломов	
Травма	— самая частая причина выполнения	
-	тенографии	85
Лучев	вая диагностика травм	85

viii СОДЕРЖАНИЕ ГЛАВ

Что такое перелом?	87	В чем заключаются недостатки KT?	133
Биомеханика кости	87	Выводы и перспективы	133
Определение перелома	88	Нейровизуализация	134
Элементы описания переломов	88	История	134
Анатомическая локализация и протяженность перелома	88	KT vs MPT	134
Тип перелома: полный или неполный	89	КТ- и МРТ-характеристики головного мозга	134
Расположение отломков	90	КТ-исследование: шесть изображений мозга	135
Направление плоскости излома	90	Основные поражения мозга	135
Наличие особых признаков	91	Краткое изложение ключевых вопросов	139
Сопутствующие нарушения	92	·	
Переломы, вызванные чрезмерной нагрузкой		Глава 5 Магнитно-резонансная томография	141
или патологическими процессами	94		
Переломы у детей	97	Магнитно-резонансная томография	141
Описание локализации перелома	97	История	141
Проблемы исследования незрелой кости	98	Принципы МРТ	141
Элементы описания переломов	98	информация на изображении и протоколы	143
Факторы, способствующие заживлению	101	Последовательности	144
Вправление и фиксация переломов	102	Применение контраста	145
Репозиция	102	Получение МР-изображений	145
Фиксация	103	Элементы конструкции МР-томографа	145
Лечение переломов	104	Анализ МР-изображений	148
Срастание переломов трубчатых костей	104	Характеристики изображения разных тканей	148
Срастание переломов губчатых костей	104	Качество изображения	150
Срастание кости после хирургической компрессии	105	Клиническое использование МРТ	150
Рентгенологический контроль срастания перелома	105	В каких случаях лучше использовать МРТ?	150
Временной период срастания перелома	105	Ограничения МРТ	151
Факторы, влияющие на срастание переломов	105	МР-артрография	152
Частота рентгенологического исследования в период		МР-миелогарфия	152
срастания перелома	107	Сравнение КТ И МРТ	152
Осложнения при заживлении перелома	108	Алгоритмы клинического мышления	153
Осложнения в области перелома	108	Клиническое мышление, алгоритм 1: ушиб кости	133
Отдаленные осложнения переломов	109	как «отпечаток» повреждения	153
Разница в длине костей	110	Клиническое мышление, алгоритм 2:	133
Сопутствующие повреждения других тканей	111	МР-визуализация стрессовых переломов	153
Жизнеугрожающие осложнения	112	Выводы и перспективы	155
Плохо диагностируемые переломы	113	Краткое изложение ключевых вопросов	155
Почему можно пропустить перелом	113	Real Roc Visito Relia Collaboration Collaboration	133
на рентгенограмме?	113	Глава 6 Ультразвуковая диагностика	157
Какие именно переломы не диагностируются?	114	- India o Indipasaykoban Andi Hocinka	
Клинический пример	116	Ультразвуковая диагностика	157
Приложение: эпонимические названия переломов	120	История	157
TIPMIONETHIC SHOTIMIN TECRNETICS TO BE TO THE PERION OF	120	Особая роль УЗИ	157
Глава 4 Компьютерная томография	125	Принципы УЗИ	158
- Homistorephan Tomor papini		Оснащение	158
Компьютерная томография	125	Генератор	158
История	125	Ультразвуковой датчик	158
Принципы КТ	125	Преобразователь (развертки) и монитор	158
Элементы КТ-аппарата	125	Физика ультразвука	158
Получение КТ-изображения	126	Генерация	159
Различные виды КТ	127	Прием	159
Трехмерная KT	127	Ультразвуковой луч	159
КТ-миелограмма	128	Взаимодействие луча и ткани	159
Конусно-лучевая КТ (КЛКТ)	129	Поглощение	159
Оценка КТ-изображений	129	Отражение	159
Рентгеноконтрастность	129	Рефракция	159
Изображение	129	Рассеяние	160
Оценка снимков пациента	130	Изображение при УЗИ	160
Оценка снимков нациента Избирательная визуализация — окна	130	Использование датчика	160
изоирательная визуализация — окна Качество изображения	130	использование датчика Подходы при сканировании разных тканей	160
Клиническое применение KT	130	Информация при получении изображения	160
Что делает КТ лучшим методом?	132	информация при получении изооражения Анализ изображений	160
TO HONGE IN MY IMPHINI MICTOHOM:	132	, with this viscopanicitivity	100

			СОДЕРЖАНИЕ ГЛАВ	ix
Качество изображения		164	Лучевое исследование ВНЧС	217
Клиническое использование УЗИ		164	Обзорная рентгенография	217
Преимущества УЗИ		164	Стандартное рентгенологическое исследование ВНЧС	218
Характеристики изображения		165	Аналоговая томография	220
В чем состоят ограничения применен	ия УЗИ?	166	Компьютерная томография	220
Выводы и перспективы		166	Магнитно-резонансная томография	221
Клинические размышления		166	Ультразвуковая диагностика	223
УЗИ в режиме реального времени — 6	5иологическая		Заболевания ВНЧС	223
обратная связь		166	Остеоартрит	223
Краткое изложение ключевых воп	іросов	167	Ревматоидный артрит	225
			Смещение диска	225
Глава 7 Исследование шейного	отдела		Этиология	225
позвоночника		169	Клинические проявления	226
			Классификация	226
Анатомия		170	Стадии смещения	226
Костная система		170	Рентгенологические признаки	226
Анатомия связок		171	МРТ при смещении диска	226
Подвижность суставов		174	Лечение смещения диска	227
Рост и развитие		174	Другие нарушения и признаки	227
Постуральное развитие		176	Гипермобильность ВНЧС	227
Рутинная рентгенологическая оце		176	Адгезия диска	227
Практическое руководство по рентген	юграфии		Переломы	228
позвоночника у взрослых и детей		176	Черепно-челюстные аномалии	228
Основные проекции и данные рентге	нологического		ВНЧС и шейный отдел позвоночника	228
наблюдения		177	Искривление шейного отдела	229
Травма шейного отдела позвоночн		177	Искривление позвоночника во фронтальной плоскости	230
Диагностическая визуализация при тр	оавме	477	Благодарность	230
шейного отдела	×	177	Краткое изложение ключевых вопросов	233
Рутинная рентгенологическая оценка		178	Клинический пример	234
Дополнительные проекции при рентг	енологической	186	Francis Douttonorman Marcha Haranna	
оценке шейного отдела		100	Глава 9 Рентгенологическое исследование	
Потенциальная травма спинного мозг	d	188	грудного отдела позвоночника,	227
или спинномозговых нервов		189	грудины и ребер	237
Переломы Вывихи		193	Обзор анатомии	237
Растяжение связок шейного отдела		197	Анатомия костей	237
Гастяжение связок шейного отдела Грыжи межпозвонковых дисков		198	Анатомия костеи Анатомия связочного аппарата	240
Дегенеративные заболевания шей	іного отпепа	150	Подвижность сустава	242
позвоночника	пого отдела	198	Рост и развитие	242
Дегенеративные изменения дисков		198	Стандартное рентгенологическое исследование	243
Дегенеративные заболевания суставо	R	200	Практическое руководство по рентгенографии	213
Прогрессирующее сужение межпозво		200	позвоночника у взрослых и детей	243
Спондилез шейного отдела	integere engeperim	201	Основные проекции и рентгенологические признаки	244
Деформирующий спондилез		201	Травма грудного отдела позвоночника	244
Диффузный идиопатический скелетні	ый гиперостоз	202	Диагностическая визуализация при травме	
Клинические решения при дегенерац	•	202	грудного отдела	244
Аномалии шейного отдела		203	Рутинная рентгенологическая оценка	
Краткое изложение ключевых воп	росов	206	грудного отдела позвоночника	246
Примеры клинических случаев	•	207	Рутинная рентгенологическая оценка грудины	250
			Рутинная рентгенологическая оценка ребер	252
Глава 8 Рентгенологическое исс	ледование		Концепция трех опорных структур стабильности	
височно-нижнечелюстн		213	позвоночника	254
			Повреждения одной или двух опорных структур	254
Историческая справка		213	Повреждения с вовлечением двух или трех	
Причины заболеваний ВНЧС		213	опорных структур	257
Обзор анатомии		213	Переломы костей грудной клетки	258
Костная анатомия		214	Болезни костей	260
Суставной диск		214	Остеопороз	260
Анатомия связочного аппарата		214	Сколиоз	263
Биомеханика ВНЧС		215	Туберкулезный остеомиелит (болезнь Потта)	267
Рост и развитие		217	Болезнь Шейерманна	267

х СОДЕРЖАНИЕ ГЛАВ

Аномал	ии развития грудных позвонков, ребер		Травма поясничного отдела	320
и гру		269	Диагностическая визуализация при травме	
	изложение ключевых вопросов	272	поясничного отдела	320
Клинич	еский пример	273	Переломы поясничного отдела	320
			Спондилолиз	320
Глава 10	Рентгенография органов грудной		Спондилолистез	328
	клетки и визуализация сердца и легких	277	Дегенеративные состояния поясничного	2.2
C		277	отдела позвоночника	33
	ачинается визуализация сердца и легких?	277 277	Клиническое исследование дегенеративного позвоночника	332 332
	анатомия	277	Стеноз позвоночного канала в поясничном отделе	33.
	грудной клетки	277	Грыжи межпозвонкового диска	33
	ы дыхания	276	Патология крестцово-подвздошного сочленения	33
Сердц		279	Повреждения связок	338
	СТЕНИЕ	281	Дегенеративные заболевания сустава Сакроилеит	338
	ь легкого	281	'	339
Диафр		282	Анкилозирующий спондилит Аномалии пояснично-крестцового отдела	33
-	я рентгенологическая оценка ическое руководство по рентгенографии	202	Фасеточный тропизм	339
	ическое руководство по ренттенографии дного отдела у взрослых и детей	282	Фасеточный прогизм Аберрантный переходный позвонок	34(
, ,		202	Spina bifida	34
	ные проекции и данные рентгенологического людения	283	Краткое изложение ключевых вопросов	34
	иодения ная рентгенологическая оценка грудной клетки	284	Примеры клинических случаев	34
Ругинг Патолог	•	288	примеры клинических случаев	544
	жности визуализации при исследовании	200	Глава 12 Рентгенологическое исследование	
	дца и легких	288	тазобедренного сустава	349
	остические категории	288		J4.
	пьное затемнение легочных полей	289	Анатомический обзор	349
	льное просветление легочных полей	291	Анатомия костей	349
	огическое расширение средостения	292	Анатомия связок	35
	огическое изменение контуров сердца	294	Подвижность сустава	35
	ительная визуализация	295	Рост и развитие	35
	звуковое исследование сердца: эхокардиография	295	Рутинная рентгенологическая оценка	35.
	ая медицина	296	Практическое руководство по рентгенографии	
	ная ангиография	299	конечностей у взрослых и детей	35.
	ютерная томография-ангиография легких	300	Основные проекции и данные рентгенологического	
	гиография	301	наблюдения	35
	изложение ключевых вопросов	301	Рутинная рентгенологическая оценка таза	35
	еский пример	302	Рутинная рентгенологическая оценка тазобедренного	
	r v		сустава и проксимального отдела бедра	358
			Травма таза и тазобедренного сустава	362
-	ЧАСТЬ ВТОРАЯ		Диагностическая визуализация при травме таза	
	TACID BIOFAN		и тазобедренного сустава	36
			Переломы таза	36
Глава 11	Рентгенологическое исследование		Переломы проксимальной трети бедра	36
	пояснично-крестцового и крестцово-		Вывих бедра	36
	подвздошного отделов позвоночника	307	Патологические изменения тазобедренного сустава	37
			Дегенеративные заболевания	37
Анатом	ический обзор	307	Ревматоидный артрит тазобедренного сустава	37
	мия костей	307	Аваскулярный некроз проксимального отдела бедра	37
Анато	мия связок	309	Эпифизеолиз бедренной кости	37
Подви	жность суставов	310	Врожденная дисплазия тазобедренного сустава	37
Рост и	развитие	312	Бедренно-вертлужный импиджмент с патологией губы	37
Рутинна	я рентгенологическая оценка	314	Краткое изложение ключевых вопросов	38.
Практі	- ическое руководство по рентгенографии		Примеры клинических случаев	38
ПОЯ	сничного отдела позвоночника			
у вз	врослых и детей	314	Глава 13 Рентгенологическая оценка	
	ные проекции и данные рентгенологического		коленного сустава	39 <i>°</i>
	людения	314		
	ная рентгенологическая оценка поясничного отдела	314	Анатомия	39
-	ная рентгенологическая оценка		Костная система	39
кре	стцово-подвздошного сочленения	322	Анатомия связок	393

Подвижность сустава	394	Глава 15 Рентгенологическое исследование	
Рост и развитие	396	плечевого сустава	479
Рутинная рентгенологическая оценка	396		
Практическое руководство по рентгенографии		Анатомический обзор	479
коленного сустава у взрослых и детей	396	Анатомия костей	479
Основные проекции и данные рентгенологического		Анатомия связок	480
наблюдения	396	Подвижность сустава	481
Рутинная рентгенологическая оценка коленного сустава	398	Рост и развитие	481
Дополнительные проекции, относящиеся		Рутинная рентгенологическая оценка	482
к коленному суставу	406	Практическое руководство по рентгенографии	
Травма коленного сустава	406	плечевого сустава у взрослых и детей	482
Диагностическая визуализация при травме		Основные проекции и данные рентгенологического	
коленного сустава	406	наблюдения	482
Переломы	407	Травма плеча	483
Подвывихи надколенно-бедренного сустава	411	Диагностическая визуализация при травме	
Повреждения суставного хряща	413	суставов плеча	483
Разрывы мениска	414	Переломы проксимального отдела плечевой кости	483
Повреждения связок	416	Рутинная рентгенологическая оценка плечевого сустава	484
Дегенеративное заболевание суставов (ДЗС)	419	Рутинная рентгенологическая оценка	
Рентгенологическая оценка	419	акромиально-ключичного сустава	488
Локализация ДЗС	420	Рутинная рентгенологическая оценка лопатки	490
Лечение	420	Рутинная рентгенологическая оценка	494
Аномалии коленного сустава	423	МРТ плечевого сустава	496
Genu valgum	423	Переломы ключицы	499
Genu varum	424	Переломы лопатки	501
Genu recurvatum	424	Вывихи плечевого сустава	502
Краткое изложение ключевых вопросов	426	Разрыв акромиально-ключичного сустава	504
Примеры клинических случаев	427	Разрывы вращательной манжеты	505
		Разрывы суставной губы	507
Глава 14 Рентгенологическое исследование		Аномальные состояния в плечевой области	510
голеностопного сустава и стопы	433	Синдром импиджмента	510
		Адгезивный капсулит	510
Анатомический обзор	433	Краткое изложение ключевых вопросов	512
Анатомия костей	433	Примеры клинических случаев	513
Анатомия связок	434		
Мобильность сустава	436	Глава 16 Рентгенологическая оценка	
Рост и развитие	436	локтевого сустава	519
Рутинная рентгенологическая оценка	437		
Практическое руководство по рентгенографии		Анатомический обзор	519
голеностопного сустава и стопы у взрослых и детей	437	Анатомия костей	519
Основные проекции и данные рентгенографии	437	Анатомия связок	520
Рутинная рентгенологическая оценка		Мобильность сустава	520
голеностопного сустава	438	Рост и развитие	520
Рутинная рентгенологическая оценка стопы	446	Рутинная рентгенологическая оценка	522
МРТ голеностопного сустава и стопы	452	Практическое руководство по рентгенографии	
Травма голеностопного сустава и стопы	454	локтевого сустава у взрослых и детей	522
Диагностическая визуализация при травме		Основные проекции рентгенологические признаки	
голеностопного сустава и стопы	454	и МРТ-анатомия	522
Растяжение связок голеностопного сустава	454	Рутинная рентгенологическая оценка локтевого сустава	524
Переломы в области голеностопного сустава	455	Рутинная рентгенологическая оценка предплечья	530
Переломы стопы	457	МРТ локтевого сустава	532
Деформации стопы	465	Травма локтевого сустава	535
Рентгенологическая оценка	465	Диагностическая визуализация при травме	
Hallux valgus	465	локтевого сустава	535
Полая стопа	466	Переломы и вывихи	536
Плоская стопа	467	Патологические состояния локтевого сустава	542
Стойкая эквиноварусная деформация стопы	470	Эпикондилит	542
Аномалии стопы	471	Рассекающий остеохондрит	542
Добавочные кости	471	Краткое изложение ключевых вопросов	544
Краткое изложение ключевых вопросов	472	Примеры клинических случаев	545
Примеры клинических случаев	473	•	

Глава 17	Рентгенологическая оценка кисти и запястья	551
Анатом	ический обзор	551
Анато	мия костей	551
Сустав	вы и связки кости и запястья	552
Моби	льность сустава	552
Рост и	развитие	554
Рутинна	ая рентгенологическая оценка	554
Практ	ическое руководство по рентгенографии конечностей	
у в:	врослых и детей	554
Основ	ные проекции и рентгенологическое исследование	554
Травма	кисти и запястья	555
Диагн	остическая визуализация при травме кисти и запястья	555
Рутині	ная рентгенологическая оценка кисти	556
Рутині	ная рентгенологическая оценка запястья	562
Факул	ьтативные проекции запястья	568
MPT 3	апястья	571
Перел	омы костей кисти	573
Перел	омы запястья	576
Перел	омы дистального отдела лучевой кости	579
Нестаби	Ільность запястья	581
Метод	ы визуализации для диагностики нестабильности	582
Неста	бильность дистального лучелоктевого сустава	586
Класс	ификация нестабильности запястья	588
Повреж	дения мягких тканей	593
Патол	огические изменения треугольного	
фи	брозно-хрящевого комплекса	593
Синдр	ом канала запястья	595
Артриті		595
Деген	еративное заболевание сустава	595
Ревма	тоидный артрит	597

Краткое изложение ключевых вопросов	597
Примеры клинических случаев	599
Глава 18 Визуализация в физиотерапии	605
Новые перспективы использования диагностической	
визуализации в обучении физиотерапевтов	605
Традиционная модель	605
Новая модель	605
Физиотерапевт как первичный специалист	607
Физиотерапевт как инициатор направления к специалистам	607
Физиотерапевты и диагностическая визуализация	608
Система здравоохранения в армии США	608
Другие практические организации в США	608
Доступ к визуализации и связь с врачами	609
Физиотерапевты и диагностическая визуализация	
за пределами Соединенных Штатов	610
Роль визуализации в диагностическом процессе	611
Когда рекомендовать визуализацию	611
Ценность информации	611
Руководство по принятию клинических решений	
и клинической практике	613
Роль визуализации в физиотерапии	615
Что должны искать физиотерапевты?	615
Включение визуализации в планирование лечения	616
Что обещает будущее?	617
Краткое изложение ключевых вопросов	618
Примеры клинических случаев	618

СОАВТОРЫ И РЕЦЕНЗЕНТЫ

Hilmir Agustsson, MHSc, PT, MTC, CFC

Professor School of Health Related Professions University of St. Augustine St. Augustine, FL

J. Bradley Barr, PT, DPT, OCS

Professor Physical Therapy Department Creighton University Omaha, NE

Ellen J. Pong, DPT, MOT, OTR/L

Physical and Occupational Therapist Sacred Heart Health System Pace Rehabilitation Pace, FL

Adjunct Instructor University of St. Augustine for Health Sciences St. Augustine, FL

Corlia van Rooyen, MPT, RHT

Rototuna Physiotherapy Hamilton, New Zealand

Lawrence P. Cahalin, PT, MA, PhD

Clinical Professor Northeastern University Department of Physical Therapy Boston,MA

Nancy Ciesla, PT, DPT, MS

Physical Therapy Clinical Specialist Johns Hopkins Hospital Baltimore,MD

Francis Golier, MD

Tarrytown Cardiology Tarrytown, NY

Steven H. Tepper, PT, PhD

President, Rehab Essentials, Inc. Coordinator, tDPT Program University of Montana Missoula, MT

7

ИССЛЕДОВАНИЕ ШЕЙНОГО ОТДЕЛА ПОЗВОНОЧНИКА

СОДЕРЖАНИЕ ГЛАВЫ

Анатомия

Костная система

Анатомия связок

Подвижность суставов

Рост и развитие

Постуральное развитие

Рутинное рентгенологическое исследование

Практическое руководство по рентгенографии позвоночника у взрослых и петей

Основные проекции и данные рентгенологического наблюдения

Травма шейного отдела позвоночника

Диагностическая визуализация при

травме шейного отдела

Рутинная рентгенологическая оценка шейного отдела

Дополнительные проекции при рентгенологической оценке шейного отдела

Потенциальная травма спинного мозга или спинномозговых нервов

Переломы

Вывихи

Растяжение связок шейного отдела Грыжи межпозвонковых дисков

Дегенеративные заболевания шейного отдела позвоночника

Дегенеративные изменения дисков Дегенеративные заболевания суставов Прогрессирующее сужение межпозвонкового отверстия

Спондилез шейного отдела

Деформирующий спондилез

Диффузный идиопатический скелетный гиперостоз

Клинические решения при дегенерации позвоночника

Аномалии шейного отдела Краткое изложение ключевых вопросов

Примеры клинических случаев

Шейный отдел позвоночника относится к наиболее частым областям нарушения функций, нуждающимся в лечении. Состояния, возникающие в результате острой травмы, дегенеративных изменений и хронических проблем с осанкой могут вызывать боль и слабость, приводящих пациента к необходимости терапевтического лечения или хирургического вмешательства. При клинической оценке некоторых категорий пациентов важно понимание фоновых дегенеративных изменений, выявляемых при рентгенографии. Степень дегенерации повлияет на способность позвоночника выдержать травму, обусловить постуральные изменения и обеспечить функциональные изменения подвижности и траектории движения.

Шейный отдел позвоночника является одной из самых частых областей рентгенологического исследования тела. В отделении неотложной помощи часто оценивают шейный отдел на предмет прямой травмы, а также про-

водят скрининг непрямого повреждения в случае тяжелого падения или несчастного случая. Мобильность шейного отдела позволяет защитить нервные структуры, но в то же время предрасполагает к определенным видам повреждений. При травме никогда не следует недооценивать потенциальное нарушение в этой уязвимой части тела, даже если сама травма произошла достаточно далеко от шеи. Перед началом оценки пациента с повреждением шейного отдела клиницисты должны получить консультацию рентгенолога. В равной степени важно и то, что клиницист не должен полагаться только на диагностические исследования. Физикальное исследование, включая проверку стабильности связок, также играет значительную роль и обязательно проводится во всех случаях повреждения шейного отдела. Обоснование лечения определяют все компоненты обследования — анамнез, клиническая оценка и лабораторные исследования, а также рентгенологические данные.

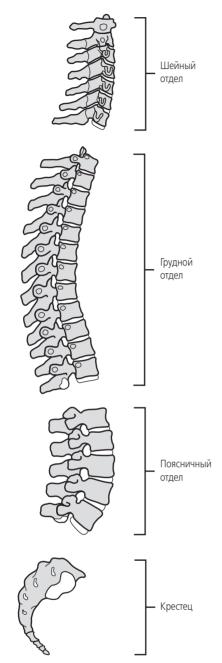
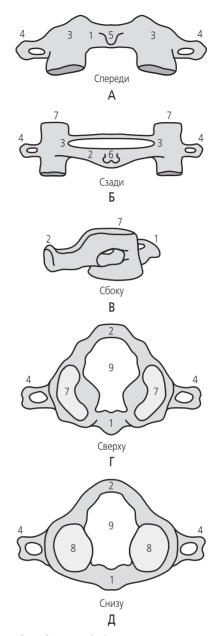
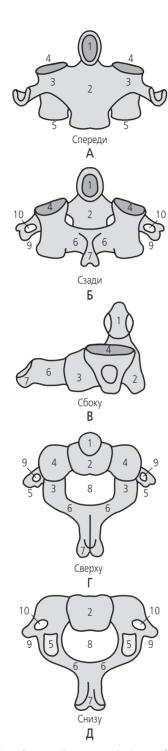



Рисунок 7-1 Отделы позвоночника.

Рисунок 7-2 (А–Д). Атлант (С1). 1 – передняя дуга; 2 – задняя дуга; 3 – латеральная масса; 4 – остистый отросток; 5 – передний бугорок; 6 – задний бугорок; 7 – затылочные мыщелки; 8 – нижние фасетки; 9 – позвоночное отверстие.

Анатомия¹⁻⁷

Костная система


Шейный отдел позвоночника (рис. 7-1) состоит из семи позвонков, размещенных в лордотической кривой. Первый шейный позвонок, *атлант* (С1) (рис. 7-2) и второй шейный, *осевой* позвонок, (С2) (рис. 7-3) обладают особыми качествами. Остальные позвонки от С3 (рис. 7-4) по С7 имеют одинаковые свойства.

Атлант, названный в честь мифического титана, держащего небесный свод, поддерживает голову. Он состоит из передней и задней дуги атланта, объединенных латеральными массами и формирующих костное кольцо. Длинные перфорированные поперечные отростки идут от латеральных масс и легко пальпируются за углами нижней челюсти. Передняя дуга имеет в середине передний бугорок на внешней поверхности и срединную фасетку на внутренней для сочленения с выступающим выше зубовидным отростком или зубом С2. Задняя дуга в качестве срединной линии имеет бугорок, руди-

Рисунок 7-3 (А–Д). Осевой позвонок (C2). 1 – зуб; 2 – тело; 3 – ножки; 4 – верхние суставные отростки; 5 – нижние суставные отростки; 6 – пластинка дуги позвонка; 7 – расщепленный остистый отросток; 8 – позвоночное отверстие; 9 – поперечные отростки; 10 – поперечное отверстие.

ментарный остистый отросток. Латеральные массы поддерживают крупные вогнутые, пологие в середине фасетки, которые сочленяются с затылочным мыщелком, формирующим атлантозатылочное сочленение. Передняя фасетка расположена в относительно поперечном положении и сочленяется с верхней фасеткой зубовидного отростка С2, формируя атлантоаксиальное сочленение (рис. 7-5 и 7-6).

Осевой позвонок назван так, потому что является стержнем, на котором вращается голова. Он состоит из небольшого тела с характерным зубом (зубовидным отростком), идущим из передней части. У зуба две сочлененных фасетки (дугоотросчатых сустава). Передняя поверхность зуба соединяется с внутренней передней дугой атланта, а задняя с поперечной связкой атланта. Короткие толстые ножки выходят по бокам от тела и обеспечивают поддержку верхнего и нижнего суставного отростка и соответствующих фасеток. Нижняя суставная фасетка компенсируется сзади передней парой и расположена в проекции, общей для остальных поверхностей суставов шеи. Поперечные отростки позвонка невелики и на этом уровне не расщеплены. Пластинка дуги позвонка идет в медиальном направлении и объединяется в короткий расщепленный остистый отросток.

Для позвонков от *C3* по *C7* характерно наличие *тела*, прочных ножек, парных суставных нижних и верхних отростков, расщепленного остистого отростка, и пластинки дуги позвонка, объединенной в расщепленный остистый отросток. У всех шейных позвонков имеется большое позвоночное отверстие для прохождения спинного мозга, поперечное отверстие для позвоночной артерии и вены, и борозды для верхних поверхностей поперечных отростков для спинномозговых нервов. Межпозвонковые диски представлены, начиная с промежутка С2-С3. Крючковидные отростки выступают от верхнебоковых краев тел, соединяясь со смежными телами для формирования небольших унковертебральных суставов, обеспечивающих некоторую стабильность промежуточных дисков (рис. 7-7). Относящиеся к суставному отростку шейного позвонка сочленения, обычно называемые фасеточными суставами, формируются суставными отростками смежных позвонков. Расширение кости, охватывающее верхний и нижний суставной отросток, определяется как суставная опора и отличается от ножек. Расширение кости между верхним и нижним отростком, известно как pars interarticularis.

Анатомия связок

Для понимания механизма травмы и возникающей в этой связи нестабильности необходимо рассмотреть основные связки данной области. Связки обладают достаточной рентгенопроницаемостью. Тем не менее, возможна косвенная оценка по суставным соотношениям, возникающим в случае нарушения целостности связок. Утрата нормального суставного положения предполагает и утрату поддержки связками. Прямая визуализация связок возможна с помощью магнито-резонансной томографии (МРТ) (рис. 7-8).

Шейно-черепные связки сложным образом поддерживают суставные сочленения между затылком, атлантом и вторым позвонком (рис. 7-9). Основными стабилизаторами являются (1) крыловидные связки, идущие вверх и вниз от верхнебоковых поверхностей зуба к затылку,

172 ЛУЧЕВАЯ ДИАГНОСТИКА В ТРАВМАТОЛОГИИ И ОРТОПЕДИИ

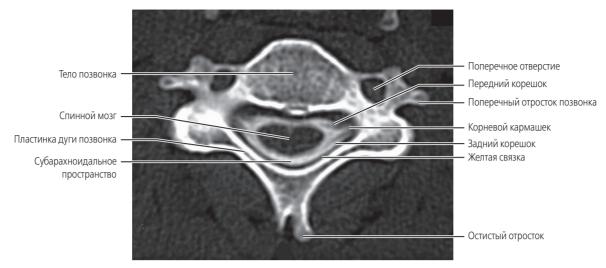
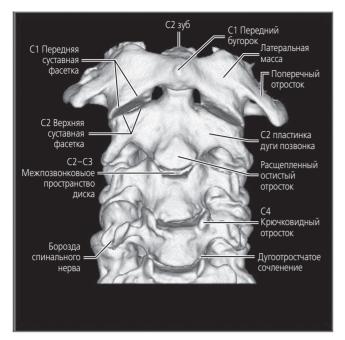


Рисунок 7-4 КТ-миелография типичного шейного позвонка в аксиальной проекции.


Рисунок 7-5 Краниовертебральное и межпозвонковое сочленение, передняя (А) и боковая (Б) проекции.



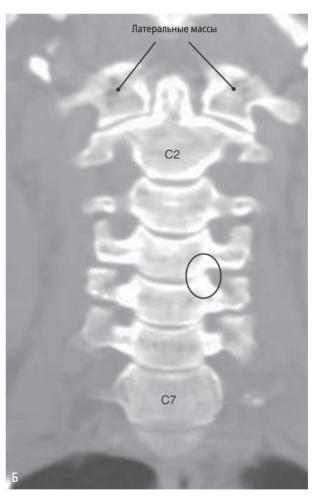


Рисунок 7-6 КТ, объемная реконструкция верхней части шейного отдела.

предотвращая чрезмерное вращение атлантозатылочного сустава; (2) поперечная связка атланта, идущая горизонтально поперек зуба с прикреплением к латеральной массе атланта, обеспечивая сочленение этих двух костей; (3) передняя и задняя атлантозатылочные связки, идущие от верхних краев атланта к большому затылочному отверстию и (4) покровная мембрана, идущая от задней части тела атланта с прикреплением к переднему краю большого отверстия, обеспечивая опору субкраниальной области.

Связки нижнего шейного отдела поддерживаются сзади (1) выйными связками, растянутыми от затылочного гребня до остистого отростка; (2) жёлтыми связками, соединяющими пластинки дуг смежных позвонков; (3) межостистыми связками, соединяющими смежные остистые отростки и (4) задней продольной связкой, находящейся в позвоночном канале и прикрепленной к дискам и задней части тел позвонков. Все эти связки помогают в ограничении сгибания вперед и вращения шейного отдела. Передняя продольная связка натянута от затылка до крестца, прикрепляясь к передним дискам и краям тел позвонков, ограничивая разгибание назад.

Рисунок 7-7 КТ, переформатированная как сагиттальная (**A**) и коронарная (**Б**) проекции шейного отдела. Первое межпозвонковое пространство диска у C2–C3. Крючковидный отросток сочленяется со смежными телами для формирования унковертебрального сустава (овал).

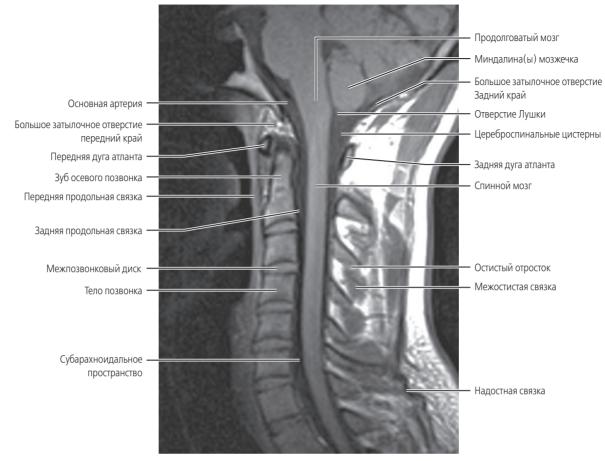


Рисунок 7-8 MPT, сагиттальная проекция шейного отдела с основными связками и структурами (источник снимка: www.medcyclopedia.com).

Подвижность суставов

Шейный отдел обладает большой подвижностью, необходимой для широкого диапазона движений головы. Комбинации движений всех сочленений шейного отдела позволяют примерно 145° сгибания и разгибания, 180° вращения вокруг оси и 90° боковых наклонов. Уникальность структурной анатомии верхних шейных сочленений обеспечивает исключительную функциональную подвижность. Сочленения шейного отдела ниже С2 одинаковы по своей функциональной роли в подвижности шейного отдела.

Для атлантозатылочного сочленения доступны примерно $10-15^{\circ}$ как сгибания, так и разгибания. Боковые наклоны возможны менее чем 10° в каждую сторону, а ротационное движение в этом сочленении минимально или отсутствует.

Атлантоаксиальное сочленение — самый мобильный сегмент шейного отдела. Возможно вращение примерно на 50° в каждую сторону, при этом представлена половина мобильности вращения всего шейного отдела. Имеют место менее 10° сгибания и разгибания с минимальным или отсутствующим боковым наклоном.

Все шейные сочленения ниже С2 допускают сгибание, разгибание, вращение и боковой наклон. Позвонки от С3 до С7 имеют примерно 40° сгибания, 25° разгибания, 45° вращения в обе стороны и 50° бокового наклона в обе стороны.

Рост и развитие

Процесс оссификации позвонков начинается на шестой неделе эмбрионального периода. К рождению имеются минимум три центра оссификации на каждом уровне (см. рентгенограмму скелета ребенка, рис. 11-17).

Передняя дуга атланта к рождению полностью хрящевая (рис. 7-10). Полное слияние в синхондроз объединит переднюю арку в возрасте восьми лет, а заднюю в возрасте четырех лет. Зубовидный отросток формируется двумя вертикально расположенными центрами оссификации. Зубовидный отросток сливается ниже с телом позвонка между 3 и 6 годами. Верхний кончик срастается в возрасте 12 лет (рис. 7-11).

Тела осевого и нижнего позвонков оссифицируются к рождению. Нейральные дуги и остистые отростки сливаются в возрасте двух или трех лет. Задние элементы позвоночника сливаются с телами позвонков между 3 и 6 годами. Тела позвонков имеют угловой выступ впереди, приобретая более квадратные очертания в возрасте семи лет. После восьми лет позвоночник обретает макроскопически взрослую форму (рис. 7-12).

Непрерывный рост позвонков в детстве происходит за счет утолщения надкостницы по типу роста надкостницы в длинных костях. В пубертатном периоде вторичные центры оссификации развиваются в верхних и нижних концевых пластинках тел позвонков. Вторичные

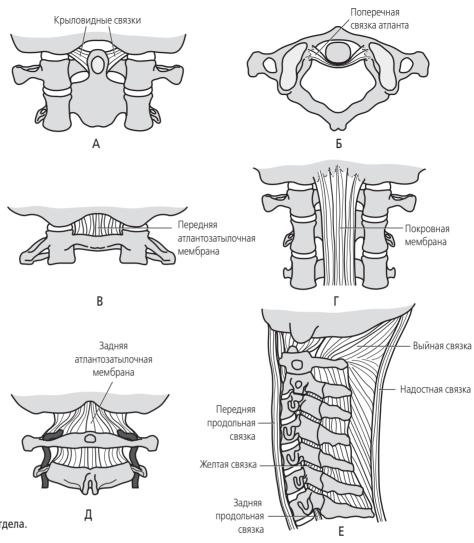
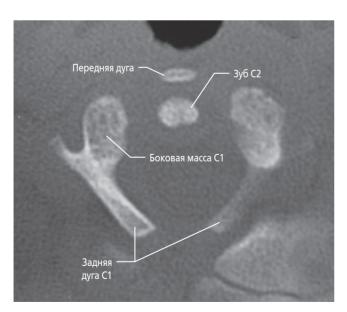
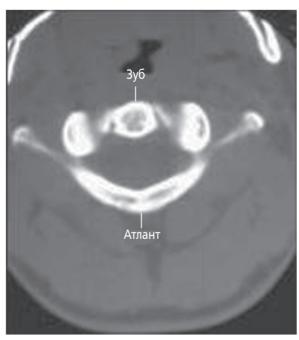
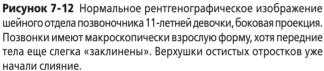



Рисунок 7-9 (А-Е) Связки шейного отдела.

Рисунок 7-10 Аксиальная КТ атланта 10-месячного ребенка. Видны только центры оссификации. Большая часть атланта в этом возрасте — хрящевая.




Рисунок 7-11 Аксиальная КТ атланта зрелого скелета.

центры оссификации появляются и для расщепленного остистого отростка, поперечного отростка и суставных отростков этого возраста. Каждая из этих структур завершает слияние в возрасте 25 лет.

Унковертебральные сочленения не представлены в ранних периодах жизни и представляются результатом дегенеративных фиброзных изменений, сопровождающих нормальное старение.

Постуральное развитие

При рождении позвоночник представляет длинную кривую с выпуклостью назад: *первичный изгиб* позвоночника. Когда ребенок научится поднимать голову, лежа на животе, начинается развитие *вторичного изгиба шейного пордоза* (рис. 7-13). У начинающего ходить ребенка развивается вторичный изгиб *поясничного пордоза*. Эти вторичные изгибы продолжают развитие до завершения роста позвоночника в постпубертатном периоде.

Постуральные изменения в позвоночнике во взрослой жизни определяются многими факторами, включая генетику, состояние здоровья, профессию и увлечения. Дегенеративные состояния и патологические процессы нередко приводят к характерным изменениям осанки (рис. 7-14).

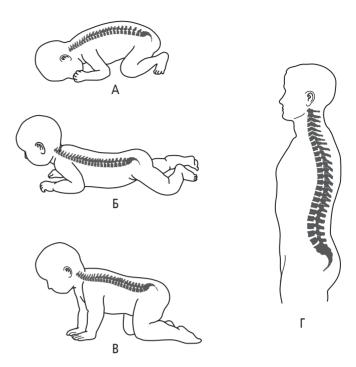


Рисунок 7-13 (A–Г) Постуральное развитие изгиба позвоночника и первичной выпуклой кривой у новорожденного (A) до вторичных изгибов шейного и поясничного отдела у взрослого человека (Г).

Травма позвоночника или конечности может влиять на положение позвоночника, когда пострадавший пытается найти способы уменьшить боль. Шейный отдел адаптируется совместно с задачей по удержанию глаз в ориентации вперед и по горизонтали.

Рутинное рентгенологическое исследование^{8–20}

Практическое руководство по рентгенографии позвоночника у взрослых и детей ⁸

Американская коллегия радиологов, главная профессиональная организации США, определяет следующие практические рекомендации в качестве инструментов обучения практике выполнения соответствующих рентгенографических исследований.

Задачи

Задачей рентгенологического исследования шейного отдела позвоночника является выявление или исключение анатомических изменений или патологических процессов в позвоночнике.

Показания

Показания к рентгенологическому исследованию включают среди прочего травму, боль в области плеча или

Рисунок 7-14 Рентгенограмма в боковой проекции у пациента с выраженным ревматоидным артритом. Развитие заболевания привело к эрозии зубовидного отростка и полной утрате нормальной лордотической кривизны позвоночника. Обратите внимание на кифоз от С2 до С4, приведший к S-образному позвоночнику. Металлический артефакт — серьга (снимок предоставлен J. C. Hunter, MD, University of California, Davis School of Medicine).

руки, головную боль в области затылка, ограничения подвижности, плановое хирургическое вмешательство, оценку первичной или вторичной малигнизации, артрит, подозрения на врожденные аномалии и синдромы, связанные с патологическими изменениями позвоночника, оценку патологических изменений позвоночника, наблюдаемую при других методах визуализации, наблюдение за выявленными изменениями и предполагаемую нестабильность позвоночника.

Основные проекции и данные рентгенологического наблюдения

Полное исследование включает весь шейный отдел, от сочленения шейного отдела с черепом до верхней концевой пластинки первого грудного позвонка. Стандартные проекции — передне-задняя и боковая. Проекция через открытый рот показана в зависимости от клинической ситуации. Боковая проекция в позе пловца проводится при необходимости оценки нижних сегментов шейного отдела и шейно-грудного сочленения позвоночника.

При травме с серьезным клиническим подозрением на перелом в шейном отделе выполняют снимки в поперечной, боковой, передне-задней и передне-задней с открытым ртом проекциях.

В некоторых клинических ситуациях могут потребоваться дополнительные проекции. Двусторонние косые

проекции могут использоваться при оценке нейрального отверстия. Нестабильность определяется по боковым проекциям со сгибанием-разгибанием. Суставная (опорная) проекция может потребоваться в случае подозрения на перелом суставной поверхности при первичном обследовании.

В педиатрии передне-задняя, передне-задняя через отрытый рот и боковая проекции достаточны при большинстве клинических показаний. Дополнительные проекции требуются реже, чем у взрослых, но включают все перечисленные. Обследование детей с высоким риском нестабильности (как при синдроме Дауна) включает боковые проекции со сгибанием/разгибанием.

Травма шейного отдела позвоночника 4,31-33

Диагностическая визуализация при травме шейного отдела

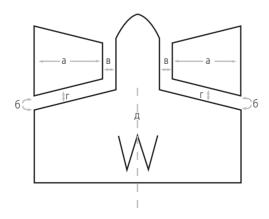
Единого мнения о том, какой именно протокол оптимален для шейного отдела у пациентов с острой травмой, не существует. Ранее считалось, что в первую очередь необходима рентгенография. Однако компьютерная томография (КТ) оказалась значительно более чувствительным методом для выявления незначительных повреждений и эффективнее для визуализации черепно-шейного и шейно-грудного сочленений. Помимо этого, у всех пациентов с неврологическим дефицитом рекомендуется МРТ, дающая возможность во время одного исследования определить положение фрагментов кости, а также выявить повреждения спинного мозга, дисков и мягких тканей.

Существует два основанных на методах доказательной медицины руководства, служащих в качестве помощи клиницисту при решении о необходимости рентгенологического исследования в случаях потенциальной травмы шейного отдела. Канадские правила исследования шейного отдела (Canadian C-Spine Rule, CCR) и Национальное исследование применения рентгенографии (National Emergency X-Radiography Utilization Study, NEXT) определяют сходные критерии. Обобщая, можно сказать, что пациенту, перенесшему острую травму, рентгенография необходима при опасном механизме травмы (несчастный случай при нырянии, падение с высоты, ДТП), в возрасте старше 65 лет, при парестезии конечностей, болезненности у срединной линии позвоночника или при невозможности поворота шеи на 45° вправо и влево.

При соответствии клиническим критериям указанных руководств действующие в настоящее время *Руководства по действиям при подозрении на спинальную травму* (ACR Appropriateness Guidelines for Suspected Spinal Trauma) рекомендуют КТ с сагиттальным и коронарным переформатированием или КТ и МРТ как взаимодополняющие исследования для оценки нестабильности или миелопатии. Более подробно правила принятия решений и основные варианты при предполагаемой травме позвоночника изложены в главе 18.

Рутинная рентгенологическая оценка шейного отдела

Передне-задняя проекция через открытый рот


В этой проекции визуализируется сочленение С1 и С2 (атлантоаксиальное сочленение). Пациента укладывают с широко открытым ртом для предотвращения совмещения плотности нижней челюсти.

Анализ рентгенологической картины

Наиболее важными результатами являются:

- 1. Симметричное положение атланта относительно осевого позвонка. Ширина латеральных масс должна быть одинаковой (а, на рисунке 7-15). Разница в ширине латеральных масс основание для подозрения на ротацию атланта. Латеральная масса с большей шириной сторона с передней ротацией.
- 2. Боковые края латеральных масс атланта не должны выглядеть латеральнее, чем верхняя суставная поверхность С2 (б, на рисунке 7-15). «Нависание» атланта предполагает перелом или вывих. Небольшой уровень нависания может быть вариантом нормы у детей.
- 3. Зуб располагается симметрично между латеральными массами атланта, с одинаковыми параметрами вертикального пространства по обеим сторонам (*в*, на рисунке 7-15).
- 4. Двусторонние суставные пространства латеральной атлантоаксиальной фасетки имеют равную высоту (*г*, на рисунке 7-15).
- 5. Остистый отросток С2 находится на средней линии (*e*, на рисунке 7-15).
- 6. Зубовидный отросток совмещается как с передней, так и с задней дугой атланта. Края дуг визуализируются как линии, пересекающие зуб. Эти края не следует путать с линией перелома.

Некоторые изменения этих ориентиров могут быть признаками слабости или надрыва связок, перелома или вывиха, относящимися к атлантоаксиальному и атлантозатылочному сочленению.

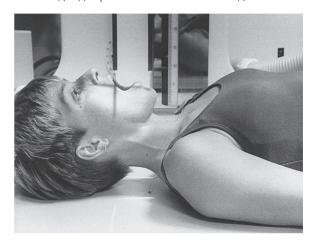
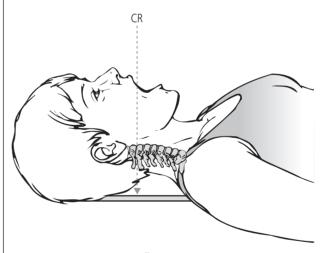


Рисунок 7-15 Пространственное расположение при рентгенографии C1–C2.


Основные проекции

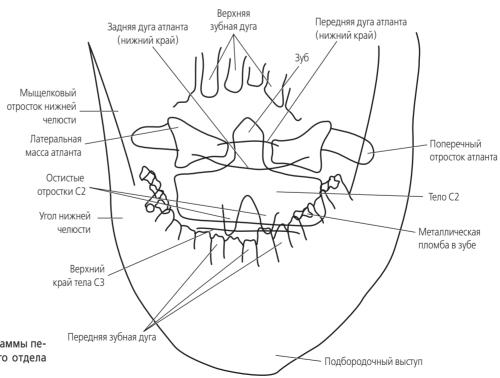
- Передне-задняя через открытый рот
- Передне-задняя нижней части шейного отдела
- Боковая
- Правая косая
- Левая косая

Укладка для рентгенологического исследования

Рисунок 7-16 Положение пациента для передне-задней проекции шейного отдела через открытый рот.

Рисунок 7-17 Центральный луч проходит через суставное пространство C1–C2.

Что мы видим?


Посмотрите на рентгенограмму (рис. 7-18) и попытайтесь определить лучевую анатомию. Нанесите на кальку контуры структур и сравните результат с приведенным на рисунке 7-19. Можно определить:

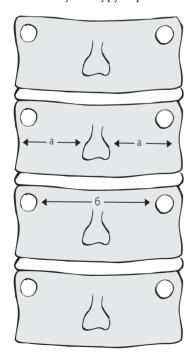
• Длинная изогнутая линия очерчивает череп

- Углы нижней челюсти
- Зубовидный отросток и тело С2
- Передняя дуга атланта
- Задняя дуга атланта
- Боковые атлантоаксиальные фасеточные суставы
- Поперечный отросток атланта
- Тела и остистые отростки от С2 по Т1

Рисунок 7-18 Передне-задняя проекция шейного отдела через открытый рот.

Рисунок 7-19 Схема рентгенограммы передне-задней проекции шейного отдела через открытый рот.

Рутинная рентгенологическая оценка шейного отдела


Передне-задняя проекция нижней части шейного отдела

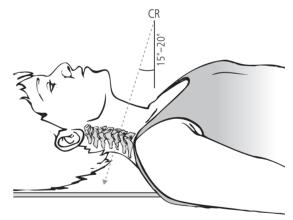
Эта проекция демонстрирует пять нижних позвонков шейного отдела, верхние грудные позвонки и соответствующие ребра, медиальную треть ключицы и трахею. Из-за совмещения с нижней челюстью и черепом закрыты верхние шейные позвонки. При определении уровня шейных позвонков нужно помнить, что суставы C2–C3 охватывают первый межпозвонковый диск, а T1 — первое реберное сочленение.

Анализ рентгенологической картины

Наиболее важными результатами являются:

- 1. Тела шейных и грудных позвонков соединены в относительно вертикальную колонну.
- 2. Остистые отростки располагаются по средней линии вдоль позвоночника. Расстояние от остистого отростка до боковых краев тела позвонка должно быть одинаковым с обеих сторон отростка (*a*, на рисунке 7-20). Обратите внимание на наличие нормальной неравномерности формы отростков.
- 3. Совмещение нависающих фасеточных суставов и суставных опор создает рентгенологическую иллюзию слегка колеблющейся колонны по обеим сторонам от тел позвонков, «латеральной колонны».
- 4. Поперечные отростки обычно находятся в изображении этой латеральной колонны. Наложение плотности латеральной колонны осложняет распознавание поперечных отростков.
- 5. Ножки также отчасти совмещаются с латеральной колонной, но могут идентифицироваться по рентгенологическому контуру кортикального слоя, на-

Рисунок 7-20 Пространственное расположение шейного отдела на рентгенограмме в передне-задней проекции.


Основные проекции

- Передне-задняя через открытый рот
- Передне-задняя нижней части шейного отдела
- Боковая
- Правая косая
- Левая косая

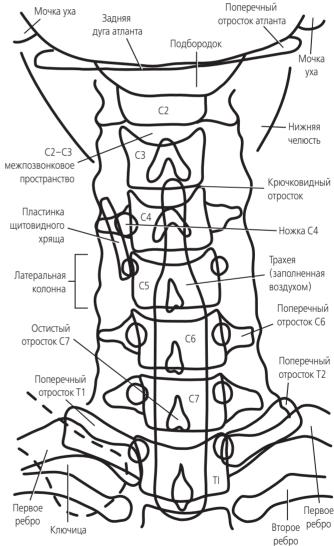
Укладка для рентгенологического исследования

Рисунок 7-21 Положение пациента для рентгенограммы в передне-задней проекции нижнего шейного отдела.

Рисунок 7-22 Центральный луч направляется под углом 15–20° краниально, входя ниже щитовидного хряща и проходя через суставные пространства C5–C6.

- поминающему овал. Как и изображение остистого отростка, эта рентгенограмма аналогична снимку, получаемому при съемке цилиндра сверху (см. рисунок 1-12, В).
- 6. Расстояние между противоположными парами ножек в шейном отделе обычно 30 мм (*б*, на рисунке 7-20).
- 7. На этой фронтальной проекции дисковое пространство не оценивается. Сагиттальная проекция лордоза и угол центрального луча могут давать некоторое искажение и не визуализировать истинные размеры дискового пространства.

- 8. Обратите внимание на крючковидный отросток, идущий от верхних тел позвонков, формирование унковертебральных суставов на том же уровне.
- 9. Видна пропускающая рентгеновское излучение заполненная воздухом трахея, закрывающая шейный отдел по средней линии.
- 10. Ключицы находятся дальше всего от пленки и потому снимаются с максимальным уровнем искажения размера по сравнению с другими структурами. Обратите внимание на усиление рентгенографической картины ключицы.


Что мы видим?

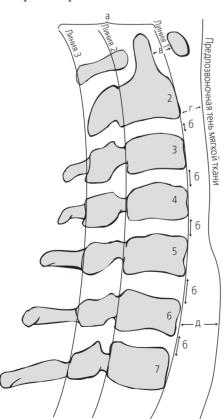
Посмотрите на рентгенограмму (рис. 7-23) и попытайтесь определить лучевую анатомию. Нанесите на кальку контуры структур и сравните результат с приведенным на рисунке 7-24. Можно определить:

- Тела позвонков от С3 по Т1 (обратите внимание на *крючковидные отростки* на некоторых уровнях)
- Остистые отростки от С3 по Т1
- Крупный поперечный отросток Т1
- Первые ребра и реберно-поперечные сочленения
- Ключицы
- Заполненная воздухом трахея.

Рисунок 7-23 Передне-задняя проекция нижней части шейного отдела.

Рисунок 7-24 Схема рентгенограммы передне-задней проекции нижнего шейного отдела.

Рутинная рентгенологическая оценка шейного отдела


Боковая проекция

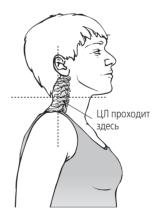
В этой проекция визуализируются семь шейных позвонков, межпозвонковые дисковые пространства, суставные опоры и фасеточные суставы, остистые отростки и предпозвоночные мягкие ткани.

Анализ рентгенологической картины

Наиболее важными результатами наблюдения являются:

- 1. Линия бокового шейного отдела может определяться тремя ориентировочно параллельными линиями (а на рисунке 7-25). В нормальном позвоночнике пространственное расположение этих линий остается постоянным, а шея находится в нейтральном положении, сгибании или разгибании. Нарушение пространственного расположения может вызываться переломом, вывихом или тяжелыми дегенеративными изменениями.
 - Линия 1. Передние кромки тел позвонков в норме выстроены в лордотическую кривую. Остеофиты могут выступать вперед и считаются тяговыми шпорами от напряжения у места прикрепления передней продольной связки или же относящимися к межпозвонковым дегенеративным изменениям. При оценке пространственного расположения этих линий их не рассматривают.

Рисунок 7-25 Пространственное расположение шейного отдела на рентгенограмме в боковой проекции.


Основные проекции

- Передне-задняя через открытый рот
- Передне-задняя нижней части шейного отдела
- Боковая
- Правая косая
- Левая косая

Укладка для рентгенологического исследования

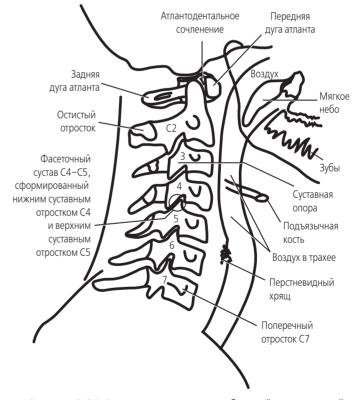
Рисунок 7-26 Положение пациента для рентгенографии в боковой проекции.

Рисунок 7-27 Центральный луч проходит горизонтально через суставную щель C4–C5.

- Линия 2. В норме задние края тел позвонков следуют той же линии, что и передние. Остеофиты могут выступать вплоть до вторжения в позвоночный канал и межпозвонковое отверстие и потенциально способны к компрессии спинного мозга и нервных корешков.
- Линия 3. Спиноламинарная линия является сочленением пластинки дуги позвонка с остистым отростком. Эта линия представляет заднее пространство центрального позвоночного канала. Позвоночный канал расположен между линиями 2 и 3.

- 2. Тела позвонков по виду напоминают коробочку с четкими, слегка волнистыми костными краями. Обратите внимание на формирование остеофитов, описанное выше.
- 3. Межпозвонковые дисковые пространства хорошо сохраняют высоту на всех уровнях (*б*, на рисунке 7-25).
- 4. Суставные опоры и фасеточные суставы совмещаются попарно на всех уровнях. Фасеточные суставы можно выявлять отдельно при косой проекции, но боковая проекция лучше для визуализации суставных краев и суставных щелей.
- 5. Синовиальная сумка между зубом и сочленяющейся фасеткой у атланта представлена темной рентгенопрозрачной линией перед зубом. Атлантодентальная поверхность или предентальное пространство расстояние, сохраняющееся постоянным поперечной связкой атланта во время движений шеи (в, на рисунке 7-25). У взрослых верхние границы этого участка составляют 2,5 мм. У маленьких детей границы 4,5 мм. Для получения информации по этому поводу просмотрите снимки со сгибанием/разгибанием в боковой проекции.
- 6. Поперечные отростки накладываются поверх тел позвонков.
- 7. Заглоточное пространство промежуток между задней стенкой глотки и передненижней частью

- С2 (г, на рисунке 7-25). В норме составляет 6 мм и меньше. Искажение тенью мягкой ткани часто бывает при кровотечении или выпоте и служит признаком травмы.
- 8. Ретротрахеальное пространство промежуток от задней стенки трахеи до передненижней части С6 (д, на рисунке 7-25). В норме составляет 22 мм у взрослых и 14 мм у детей. Для запоминания данных для взрослых существует мнемоника «6 на 2 и 22 на 6».


Что мы видим?

Посмотрите на рентгенограмму (рис. 7-28) и попытайтесь определить лучевую анатомию. Нанесите на кальку контуры структур и сравните результат с приведенным на рисунке 7-29. Можно определить:

- Дуги С1
- Зубовидные отростки
- Тела позвонков от С2 по С7
- Суставные опоры и пластинки дуги позвонка (отметьте фасеточные суставы, сформированные смежными суставными отростками)
- Межпозвонковые дисковые пространства от C2-C3 по C6-C7
- Остистые отростки (отметить седьмой шейный позвонок)
- Поперечные отростки
- Поверхности фасеточных суставов

Рисунок 7-28 Боковая проекция шейного отдела.

Рисунок 7-29 Схема рентгенограммы в боковой проекции шейного отдела.

РЕНТГЕНОЛОГИЧЕСКАЯ ОЦЕНКА КОЛЕННОГО СУСТАВА

СОДЕРЖАНИЕ ГЛАВЫ

Анатомия

Костная система Анатомия связок Подвижность сустава Рост и развитие

Рутинное рентгенологическое исследование

Практическое руководство по рентгенографии коленного сустава у взрослых и детей

Основные проекции и данные рентгенологического наблюдения

Рутинная рентгенологическая оценка

коленного сустава

Дополнительные проекции относящиеся к коленному суставу

Травма коленного сустава

Диагностическая визуализация при травме коленного сустава Переломы

Подвывихи надколенно-бедренного

Повреждения суставного хряща

Разрывы мениска Повреждения связок

Дегенеративное заболевание суставов (ДЗС)

Рентгенологическая оценка Локализация ДЗС Лечение

Аномалии коленного сустава

Genu valgum Genu varum Genu recurvatum

Краткое изложение ключевых вопросов Примеры клинических случаев

Коленный сустав чаще, чем какой-либо другой сустав тела подвергается клиническим исследованиям и становится предметом научных изысканий. Одной из причин является чрезвычайно большое количество пациентов с нарушениями в этой области — более 1,3 млн ежегодных поступлений в отделения неотложной помощи в США связаны с травмами колена. 2

Сложная артрокинематика коленного сустава допускает сочетание высокой стабильности со значительной мобильностью. 2

Такое механическое соотношение обеспечивает коленный сустав способностью выдерживать значительные нагрузки и распределять нагрузку, сохраняя свободную походку. Однако уникальная анатомия коленного сустава вкупе с положением между двумя самыми длинными костями, делает его уязвимым к различным повреждениям, травмам и патологическим изменениям.

Коленный сустав хорошо визуализируется при рутинной рентгенографии. Большинство переломов, а также заболеваний нетравматического характера выявляются и адекватно оцениваются по обычным рентгенограммам.

Внутрисуставные нарушения и прочие патологические изменения мягких тканей обычно лучше визуализируются при MPT.

Костная система

Коленный или бедренно-большеберцовый сустав формируется сочленением мыщелков бедренной кости с проксимальным концом большеберцовой кости. Адаптивная конгруэнтность суставной поверхности обеспечивается менисками. С коленным суставом связан надколенно-бедренный сустав (сочленение переднего отдела бедренной кости и надколенника) и межберцовый сустав (сочленение латеральной поверхности большеберцовой кости и головки малоберцовой кости) (рис. 13-1 и 13-2).

Дистальная часть бедренной кости

На дистальном сегменте бедренной кости находятся медиальный и латеральный мыщелки, разделенные спереди блоковидным углублением или межмыщелковой бороздой.

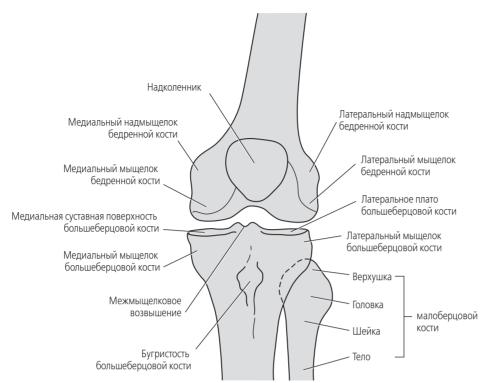

Сзади мыщелки бедренной кости разделяются глубокой межмыщелковой ямкой. Медиальный и латеральный надмыщелки являются возвышениями проксимальнее мыщелков и служат местом прикрепления мышц.

Рисунок 13-1 Коленный сустав, передняя поверхность.

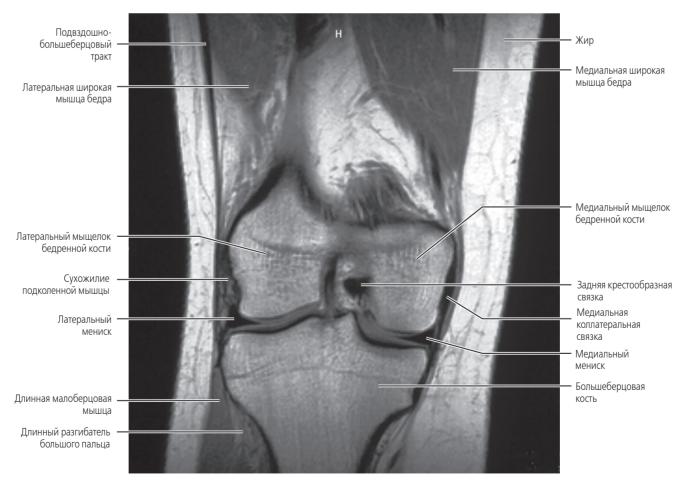


Рисунок 13-2 Коронарная MPT коленного сустава в режиме T1 (снимок http://www.medcyclopaedia.com by GE Healthcare).

Надколенник

Надколенник — большая сесамовидная кость, расположенная в сухожилии четырехглавой мышцы бедра. Гладкая суставная поверхность имеет множество фасеток для эффективного механизма распределения нагрузки во время движений в блоковидном углублении. Наружная передняя поверхность выпуклая и шероховатая. Широкая верхняя поверхность является основанием, нижняя поверхность — вершиной надколенника.

Проксимальная часть большеберцовой кости

Проксимальная часть большеберцовой кости имеет медиальный и латеральный мыщелки, формирующие сверху расширяющуюся суставную поверхность — верхнюю суставную поверхность (плато) большеберцовой кости. Между мыщелками на плато расположено межмыщелковое возвышение или бугристость большеберцовой кости, состоящая из двух небольших возвышений с вершинами межмыщелковых бугорков. Латеральный мыщелок имеет фасетку на задненижней поверхности для сочленения с головкой малоберцовой кости. На срединной линии передней стороны проксимальной части большеберцовой кости, чуть дистальнее мыщелков, находится бугристость большеберцовой кости, возвышение, служащее дистальным местом прикрепления связки надколенника. Дистальнее этой точки идет гребень большеберцовой кости. Этот острый выступ представляет переднюю поверхность диафиза большеберцовой кости, доходя до медиальной лодыжки.

Малоберцовая кость

Малоберцовая кость является не несущей нагрузки весом костью нижней конечности. Проксимальный конец

является головкой, сочленяющейся с большеберцовой костью. Верхний кончик головки — верхушка или шиловидный отросток. Клиновидная область ниже головки — шейка малоберцовой кости. Длинный тонкий диафиз малоберцовой кости заканчивается дистально латеральной лодыжкой.

Анатомия связок

У коленного сустава четыре стабилизирующих связки (рис. 13-3): медиальная коллатеральная, латеральная коллатеральная, передняя и задняя крестообразные связки. Дополнительная стабильность обеспечивается другими разнообразными малыми связками и комплексами мыши.

Медиальная коллатеральная или большеберцовая связка начинается от медиального надмыщелка бедренной кости и идет до медиального мыщелка и медиальной поверхности большеберцовой кости. Волокна медиальной коллатеральной связки соединяются с капсулой сустава и медиальным мениском. Медиальная коллатеральная связка—основной стабилизатор при вальгусной нагрузке во время сгибания или разгибания.

Латеральная коллатеральная или малоберцовая связка коленного сустава отходит от латерального надмыщелка бедренной кости и идет к головке малоберцовой кости. Эта связка внесуставная, она не сливается с суставной капсулой или латеральным мениском. Она играет роль в защите коленного сустава от варусной нагрузки.

Передняя крестообразная связка идет от несуставной части плато большеберцовой кости почти вперед и от межмыщелкового возвышения и проходит к задней медиальной части латерального мыщелка бедренной кости. Передняя крестообразная связка находится целиком

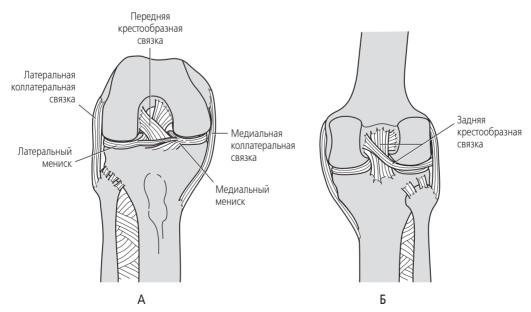


Рисунок 13-3 Большие связки коленного сустава: вид спереди (А) и сзади (Б).

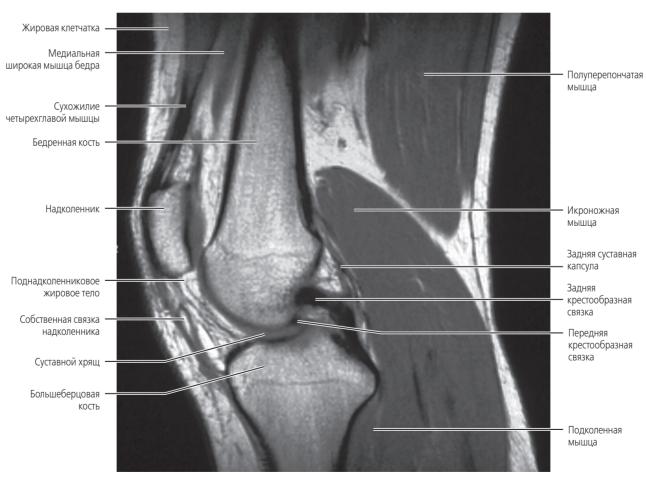
вне капсулы сустава, но является экстрасиновиальной. Функция заключается в первичном удержании от переднего смещения большеберцовой кости.

Задняя крестообразная связка также экстрасиновиальная, но находится в капсуле сустава. Она начинается позади межмыщелкового возвышения и проходит к латеральной части медиального мыщелка бедренной кости. Она служит пассивным стабилизатором от возможного заднего смещения большеберцовой кости.

Связка надколенника, определяемая также и как сухожилие надколенника, идет от верхушки надколенника к бугристости большеберцовой кости (рис. 13-4). Связка надколенника может рассматриваться в качестве продолжения общего сухожилия мышечной группы четырехглавой мышцы.

Подвижность сустава

Функции коленного сустава в качестве специфического шарнирного сочленения заключаются в передаче широкого диапазона движений сгибания и разгибания в сагиттальной плоскости. Имеется дополнительная ротационная подвижность в поперечной плоскости.


Остеокинематика бедренно-большеберцового отдела

Показатели нормы для амплитуды активных движений составляют от 0° разгибания или 10° гиперэкстензии до 145° сгибания. Ротация большеберцовой кости возможна до 45° в медиальном и латеральном направлениях в положении сгибания.

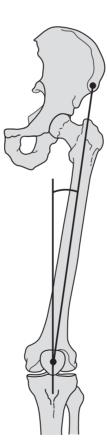
Приведение и отведение во фронтальной плоскости сходным образом определяются объемом сгибания сустава, достигающим только нескольких градусов каждый раз, когда колено сгибается в диапазоне от 0 до 30°.

Артрокинематика бедренно-большеберцового отдела

Артрокинематика этого сочленения определяется ортопедическим правилом для выпукло-вогнутых поверхностей. Это означает, что движения сгибания и разгибания колена происходят путем комбинированного вращения и скольжения выпуклой бедренной поверхности относительно вогнутой большеберцовой. Специфическое участие суставных поверхностей зависит от того, функционирует ли сустав в замкнутой или разомкнутой кине-

Рисунок 13-4 Сагиттальная MPT коленного сустава в режиме T1. Надколенник расположен в сухожилии четырехглавой мышцы. Дистальное продолжение сухожилия четырехглавой мышцы — связка надколенника (*снимок http://www.medcyclopaedia.com by GE Healthcare*).

тической цепочке или же происходит сгибание или разгибание.


Биомеханика надколенно-бедренного сустава

Надколенно-бедренный сустав функционирует как седловидный сустав. Основным движением является скольжение или сопровождение движения вдоль блоковидной борозды. При разгибании колена надколенник расположен на верхнем конце блоковидной борозды, а во время сгибания следует или скользит каудальнее в борозду. Надколенник смещается в дистальном направлении примерно на 7 см от полного выпрямления колена до сгибания. И медиальная и латеральная фасетки надколенника контактируют с бедренной костью при разгибании и на 90° при сгибании. При превышении 90° надколенник ротируется или наклоняется и сохраняет контакт лишь с медиальным мыщелком бедренной кости. При полном сгибании колена надколенник находится глубоко в межблоковом углублении.

Q-угол

Механика надколенно-бедренного сустава прямо или косвенно опосредуется тягой четырехглавой мышцы надколенника.

Угол тяги четырехглавой мышцы, Q-угол, может измениться в проксимальном направлении поворотом тазобедренного сустава или в дистальном при движении стопы. Угол Q определяется по пересечению линии тяги четырехглавой мышцы с линей, соединяющей центр надколенника с центром бугристости большеберцовой кости (рис. 13-5). В норме он составляет примерно 10°, больший угол может указывать на предрасположенность к неадекватной тяге надколенника и возникающей в результате этого нестабильности. Сам по себе надколенник служит для увеличения рычага силы четырехглавой мышцы и способствует распространению сжимающего усилия бедренной кости. Неадекватная механика надколенно-бедренного сустава может вызывать болезненные состояния и функциональные нарушения коленного сустава.

Рисунок 13-5 Направление тяги четырехглавой мышцы по отношению к надколеннику описывается с помощью угла Q, сформированного пересечением линий от центра надколенника к бугристости большеберцовой кости и от центра надколенника до передненижней подвздошной ости.

Биомеханика межберцового сустава

Проксимальный межберцовый сустав относится к скользящему синовиальному типу. Ограниченное движение возможно между латеральным большеберцовым мыщелком и головкой малоберцовой кости. Учитывайте, что дистальный межберцовый сустав является не синовиальным, а синдесмотическим, с очень малой подвижностью.

Рост и развитие

При рождении имеются вторичные эпифизарные центры дистальной части бедренной кости и проксимальной большеберцовой кости, их можно идентифицировать на рентгенограмме как оссифицированные структуры (рис. 13-6). Вторичный эпифизарный центр головки малоберцовой кости не появится примерно до трех лет. Надколенник не виден на рентгенограммах до начала оссификации примерно в четырехлетнем возрасте. Эпифизиз (physis) каждой длинной кости продолжает постепенно расти, а пластинки эпифиза в итоге сливаются после пубертатного периода примерно в 16–18 лет (рис. 13-7). У женщин полное развитие скелета обычно происходит раньше, чем у мужчин.

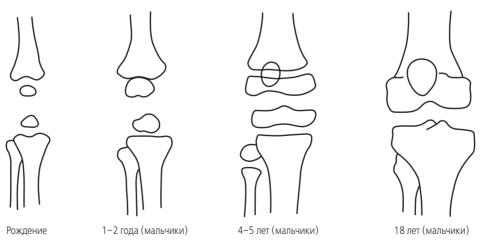
Рутинное рентгенологическое исследование 11-21

Практическое руководство по рентгенографии коленного сустава у взрослых и детей ¹¹

Американская коллегия рентгенологов, главная профессиональная организации США, определяет следующие

практические рекомендации в качестве инструментов обучения практике выполнения соответствующих рентгенологических исследований.

Задачи


Задачей рентгенологического исследования является выявление или исключение анатомических изменений или патологических процессов в коленном суставе.

Показания

Показания для рентгенологического исследования включают (но не ограничиваются) травму, в том числе предполагаемое физическое насилие; костные изменения, вторичные по отношению к метаболическим нарушениям; системные заболевания или связанные с питанием; новообразования; инфекции; неопластические заболевания кости; артропатии; пред- и после операционные исследования и длительное наблюдение; врожденные синдромы и нарушения развития; сосудистые повреждения; оценку мягких тканей; боль; взаимосвязь патологических изменений скелета, выявленных другими методами визуализации.

Основные проекции и данные рентгенологического наблюдения 11-21

Минимум рекомендуемых проекций включает передне-заднюю и боковую проекции коленного сустава и надколенника и тангенциальную проекцию надколенника. К обычным дополнительным вариантам при рутинной рентгенографии относятся задне-передняя осевая проекция межмыщелковой ямки.

Рисунок 13-6 Рентгенографические признаки оссификации коленного сустава в разном возрасте от рождения до 18 лет (*адаптировано из Meschan*, 5 *стр. 218*).

Рисунок 13-7 Нормальный рост и развитие. (A) В возрасте трех лет имеются вторичные эпифизы дистальной части бедренной кости и проксимальной части большеберцовой кости, в то время как головка малоберцовой кости выглядит лишь как небольшой очаг оссификации. (Б) К девяти годам вторичные эпифизы достигают нормальной взрослой формы. Пластинки роста «открыты», что показывают рентгенопрозрачные линии. (В) К 16 годам эпифизарные пластинки полностью слились, однако линии роста еще заметны, особенно поперек проксимальной части большеберцовой кости.

Рутинная рентгенологическая оценка коленного сустава

Передне-задняя проекция

В этой проекции визуализируются дистальный сегмент бедренной кости, проксимальный сегмент большеберцовой кости, бедренно-большеберцовое сочленение и головка малоберцовой кости.

Анализ рентгенологической картины

Наиболее важными результатами являются:

- 1. Надколенник накладывается на бедренную кость. Нижний полюс (вершина) надколенника в норме расположен на уровне линии стыка (а, на рисунке 13-8), но без пересечения.
- 2. В норме бедренно-большеберцовая суставная щель хорошо определяется рентгенографически в срединном и в боковом отделах. В нормальном коленном суставе эти промежутки имеют равную высоту (6, на рисунке. 13-8).
- 3. Суставная поверхность плато большеберцовой кости видна в боковой проекции с визуализацией лишь минимума поверхности.
- 4. Медиальная половина головки малоберцовой кости закрыта сзади наложением большеберцовой кости.
- 5. В норме продольные оси бедренной и большеберцовой костей расположены по одной линии (в, на рисунке 13-8).
- 6. В норме должен быть выражен контраст между костью и мягкой тканью. Трабекулярные маркеры и кортикальные края представлены раздельно.

Основные проекции

- Передне-задняя
- Боковая
- Задне-передняя осевая «туннельная» проекция межмыщелковой ямки
- Тангенциальная проекция надколенно-бедренного сустава

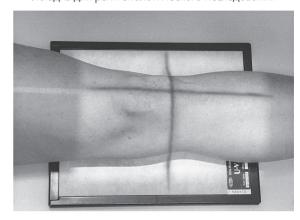


Рисунок 13-9 Положение пациента для передне-задней проекции коленного сустава.

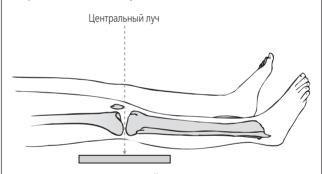
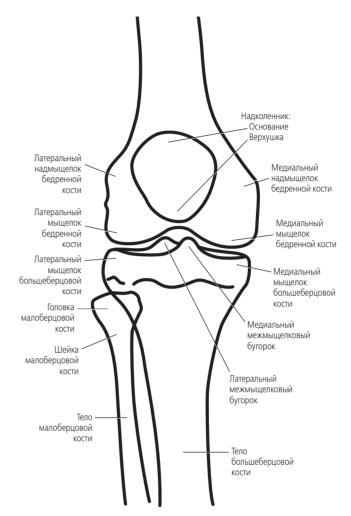


Рисунок 13-10 Центральный луч направлен снизу к дистальному полюсу надколенника, проходя через бедренно-большеберцовое суставное пространство.

Что мы видим?

Посмотрите на рентгенограмму (рис. 13-11) и попытайтесь определить лучевую анатомию. Нанесите на кальку контуры структур и сравните результат с приведенным на рисунке 13-12. Сравните также с трехмерным КТ-изображением колена (рис. 13-13). Можно определить:


- Дистальную часть бедренной кости (идентифицируются медальный и латеральный мыщелки)
- Проксимальную часть большеберцовой кости (идентифицируются медиальный и латеральный мыщелки и межмыщелковое возвышение)
- Бедренно-большеберцовое суставное пространство (сравните высоту в срединном отделе с боковом отделом)
- Надколенник
- Проксимальная часть малоберцовой кости (идентифицируются головка, шейка и тело).

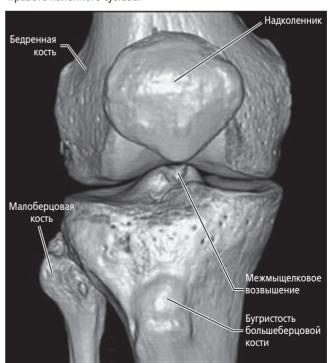
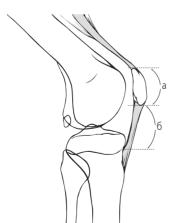


Рисунок 13-11 Рентгенограмма коленного сустава в передне-задней проекции.

Рисунок 13-12 Схема рентгенограммы передне-задней проекции правого коленного сустава.

Рисунок 13-13 Трехмерная КТ коленного сустава (*снимок http://www. medcyclopaedia.com by GE Healthcare*).

Рутинная рентгенологическая оценка коленного сустава


Боковая проекция

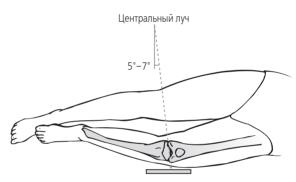
В этой проекции визуализируется в профиль надколенно-бедренный сустав, наднадколенниковая сумка, сухожилие четырехглавой мышцы и сухожилие надколенника. Обычно пациент лежит на боку на исследуемой стороне.

Анализ рентгенологической картины

Наиболее важными результатами являются:

- 1. Для стандартной проекции колено сгибается примерно под углом 20°.
- 2. Пучок направляется через колено в медиально-латеральном направлении; таким образом часть головки малоберцовой кости скрывается за большеберцовой костью.
- 3. При истинно латеральном положении мыщелки бедренной кости почти полностью накладываются один на другой. Тем не менее, увеличение медиального мыщелка может стать причиной того, что его линейное изображение будет расположено несколько ниже латерального мыщелка.
- 4. Медиальный и латеральный мыщелки большеберцовой кости также накладываются один на другой. Межмыщелковое возвышение отбрасывает тень выше плато большеберцовой кости и частично совмещается с мыщелками бедренной кости.
- 5. Исследуют соотношение надколенника с бедренной костью. Аномально высокое положение надколенника определяется как patella alta. Аномально низкое положение определяется как patella baja.
- 6. Определяют соотношение длины надколенника (измеряется от основания до верхушки, а, на рисунке 13-14) с длиной связки надколенника (измеряется от места прикрепления у верхушки надколенника до бугристости большеберцовой кости, б, на рисунке 13-14). В норме они почти равны, разница не должна превышать 20%. Увеличение более чем на 20% указывает на патологическое положение надколенника.

Рисунок 13-14 Пространственное расположение надколенника при рентгенографии. В норме длина надколенника (*a*) равна длине связки надколенника (*б*) с отклонением не более 20%.


Основные проекции

- Передне-задняя
- Боковая
- Задне-передняя осевая «туннельная» проекция межмыщелковой ямки
- Тангенциальная проекция надколенно-бедренного сустава

Рисунок 13-15 Положение пациента при рентгенограмме коленного сустава в боковой проекции.

Рисунок 13-16 Центральный луч направляется на коленный сустав с наклоном 5–7% краниально. Такое небольшое отклонение предотвращает возможность скрытия суставной щели из-за увеличения изображения медального мыщелка бедренной кости.

- 7. В норме должен быть выражен контраст между костью и мягкими тканями. Трабекулярные маркеры и кортикальные края представлены раздельно.
- 8. В норме наднадколенниковая сумка выглядит как тонкая рентгенопрозрачная полоска чуть позади сухожилия четырехглавой мышцы. При выпоте сумка растягивается и дает изображение овальной плотности при наличии повреждения сустава.
- 9. Фабелла, небольшая сесамовидная кость, расположенная в задней суставной капсуле у места прикрепления латеральной головки икроножной мышцы, встречается примерно у 18% людей. Она выглядит как небольшая овальная плотность в задних мягких тканях. Патологические состояния, такие как выпот в сустав или артрит, могут смещать фабеллу.

Что мы видим?

Посмотрите на рентгенограмму (рис. 13-17) и попытайтесь определить лучевую анатомию. Нанесите на кальку контуры структур и сравните результат с приведенным на рисунке 13-18. Сверьте костную анатомию на рентгенограмме и МРТ в режиме Т1 (рис. 13-19). Можно определить:

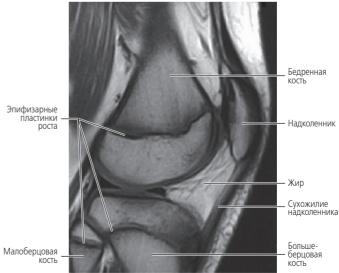
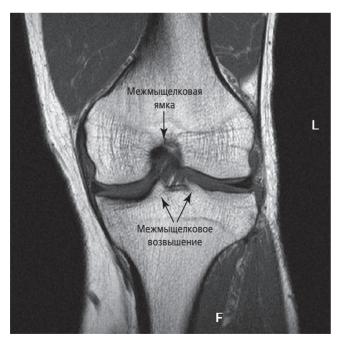

- Дистальную часть бедренной кости (идентифицируются медиальный и латеральный мыщелки)
- Проксимальную часть большеберцовой кости (бугристость большеберцовой кости, суставная поверхность и межмыщелковое возвышение)
- Проксимальную часть малоберцовой кости (головку, шейку и тело)
- Надколенник (измерить и сравнить длину надколенника и длину связки надколенника).

Рисунок 13-17 Боковая проекция коленного сустава.

Рисунок 13-18 Схема рентгенограммы боковой проекции коленного сустава.

Рисунок 13-19 Сагиттальная проекция коленного сустава на MPT в режиме T1.

Рутинная рентгенологическая оценка коленного сустава


Задне-передняя осевая «туннельная» проекция межмыщелковой ямки

В этой проекции визуализируются межмыщелковая ямка, задние отделы бедренных и большеберцовых мыщелков, межмыщелковое возвышение большеберцовой кости и плато большеберцовой кости. При рутинном исследовании в этой проекции обычно проводят поиск свободных тел в суставе, оценку возможных остеохондральных дефектов и наблюдение за любым сужением бедренно-большеберцового суставного пространства.

Анализ рентгенологической картины

Наиболее важными результатами наблюдения являются:

- 1. Для этой проекции пациент укладывается на животе с коленом, согнутым примерно под углом 40°.
- 2. В норме межмыщелковая ямка выглядит как вход в железнодорожный туннель (рис. 13-20), поэтому иногда говорят о «туннельной» проекции. Остеохондральные дефекты или эрозии вызваны кровоизлиянием в сустав и могут привести к квадратной форме ямки вместо перевернутого U.
- 3. Надколенник закрывается дистальной частью бедренной кости.
- 4. Межмыщелковая ямка должна выглядеть открытой с хорошо визуализируемой поверхностью.
- 5. Должна быть частично видна суставная поверхность большеберцовой кости. Должны быть видны обе бугристости большеберцовой кости.
- 6. Головка малоберцовой кости частично накладывается на проксимальную часть большеберцовой кости.

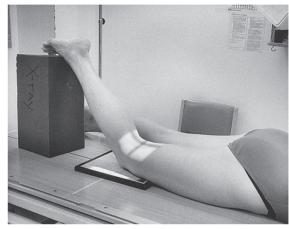
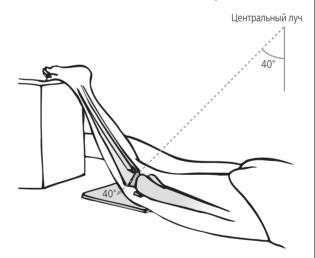


Рисунок 13-20 Коронарная МРТ напоминающей туннель межмыщелковой ямки в режиме T1.


Основные проекции

- Передне-задняя
- Боковая
- Задне-передняя осевая «туннельная» проекция межмыщелковой ямки
- Тангенциальная проекция надколенно-бедренного сустава

Укладка для рентгенологического исследования

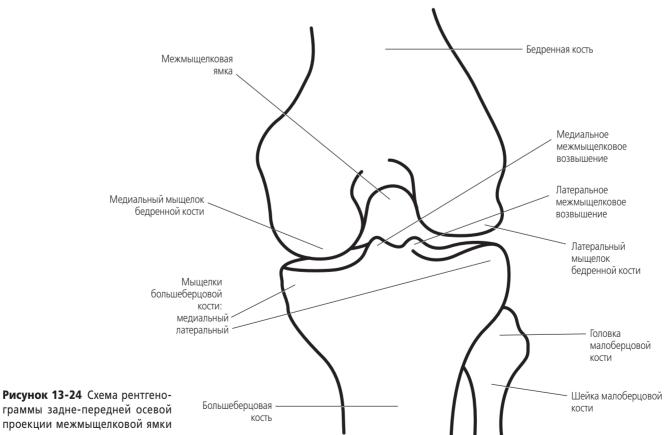
Рисунок 13-21 Положение пациента при аксиальной проекции межмыщелковой ямки коленного сустава.

Рисунок 13-22 Центральный луч наклонен каудально под углом 40° и проходит в задне-переднем направлении через сустав.

Что мы видим?

Посмотрите на рентгенограмму (рис. 13-23) и попытайтесь определить лучевую анатомию. Нанесите на кальку контуры структур и сравните результат с приведенным на рисунке 13-24. Можно определить:

Дистальную часть бедренной кости (идентифицируются медиальный и латеральный мыщелки и межмыщелковая ямка)


- Проксимальную часть большеберцовой кости (медиальный и латеральный мыщелки и межмыщелковое возвышение)
- Малоберцовую кость
- Надколенник с наложением позади бедренной кости
- Межмыщелковую ямку

коленного сустава.

• Межмыщелковое возвышение.

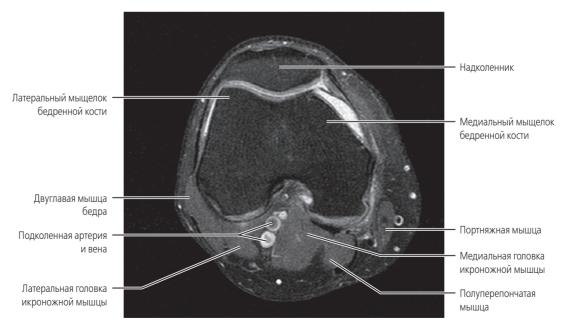
Рисунок 13-23 Задне-передняя осевая проекция межмыщелковой ямки правого коленного сустава.

Рутинная рентгенологическая оценка коленного сустава

Тангенциальная проекция надколенно-бедренного сустава

Эта проекция демонстрирует осевой вид надколенно-бедренного сустава и суставные поверхности надколенника и бедренной кости.

Анализ рентгенологической картины

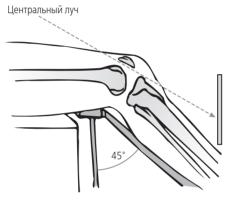

Наиболее важными результатами являются:

- 1. Пациент лежит на спине с коленом, согнутым под углом 45°. Пучок входит параллельно надколенно-бедренной суставной щели или по касательной к суставной поверхности. Пучок может идти в верхне-нижнем направлении (проекция Merchant) или, как показано здесь, в нижне-верхнем.
- 2. Суставная поверхность надколенника должна быть ровной и выделенной. Возможна визуализация двух наложенных краев из-за неравномерной топографии суставной поверхности.
- 3. На этой проекции видны латеральные и медиальные фасетки надколенника. В норме медиальная больше, иногда с более выраженным наклоном контура.
- 4. Межмыщелковая борозда идентифицируется как углубление между дистальными участками мыщелков бедренной кости.
- 5. Эта проекция может использоваться и для выявления подвывихов надколенника. Alan C. Merchant описал два параметра, помогающих определить нормальное положение надколенника. 13
- Угол борозды (а, на рисунке 13-29) угол между линиями, проведенными от самой высокой точки мыщелка бедренной кости к самой нижней точке блоковидной ямки. В норме он составляет 138°±6°. Малые

Основные проекции

- Передне-задняя
- Боковая
- Задне-передняя осевая «туннельная» межмыщелковой ямки
 - углы (те же при больших замерах) могут быть связаны с рецидивирующими вывихами надколенника.
- Угол конгруэнтности помогает определить положение надколенника в межмыщелковой борозде. Вначале проводится линия отсчета, делящая пополам угол борозды. Вторую линию ведут от вершины угла борозды к самой задней или нижней точке суставного гребня надколенника. Если вторая линия находится медиальнее опорной, полученный угол конгруэнтности (б, на рисунке 13-29) определяется как отрицательная величина. Если вторая линия проходит латеральнее основной, то угол положительный. В исследовании Merchant выявлен средний угол конгруэнтности –6° для нормальных субъектов. Углы 16° или более были связаны с латеральными подвывихами надколенника или иными нарушениями надколенно-бедренного сустава.

При оценке надколенно-бедренных взаимосвязей следует помнить, что данная проекция дает лишь информацию, специфичную для коленного сустава в сгибании. Серии срезов КТ или МРТ могут дать больше информации о конгруэнтности поверхности надколенно-бедренного сустава в целом (рис. 13-25). К сожалению, все изображения статичны и не могут отразить информацию о динамических силах, регулирующих движение надколенника. Для получения подобных сведений необходима практическая оценка.


Рисунок 13-25 Аксиальная MPT надколенно-бедренного сустава в режиме T2. Анализ всех аксиальных срезов вдоль суставной поверхности надколенника позволит получить ценную информацию о конгруэнтности сустава.

Укладка для рентгенологического исследования

Рисунок 13-26 Положение пациента для тангенциальной («восходящей») рентгенограммы надколенно-бедренного сустава.

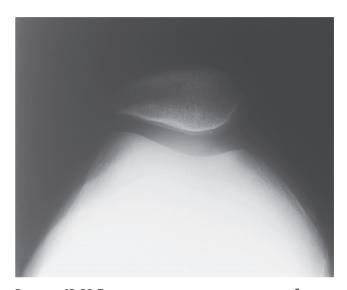


Рисунок 13-27 Центральный луч направляется через суставное пространство надколенно-бедренного сустава параллельно суставной поверхности.


Что мы видим?

Посмотрите на рентгенограмму (рис. 13-28) и попытайтесь определить лучевую анатомию. Нанесите на кальку контуры структур и сравните результат с приведенным на рисунке 13-29. Можно определить:

- Надколенник (идентифицируются медиальная и латеральная поверхности)
- Мыщелки бедренной кости (идентифицируются медиальная и латеральная поверхности)
- Величину угла борозды
- Величину угла конгруэнтности

Рисунок 13-28 Тангенциальная проекция надколенно-бедренного сустава.

Рисунок 13-29 Схема рентгенограммы в тангенциальной проекции надколенно-бедренного сустава.

